
macOS

John O’Gorman (john@og.co.nz)

9 October 2017

Contents

1 Intro 3
1.1 Unix Based . 3
1.2 Problems Unresolved . 3
1.3 Homebrew . 3
1.4 Same as Unix/Linux . 4
1.5 Slightly Different . 4
1.6 Very Different . 4

2 Setting PATH 4
2.1 /etc/path . 5
2.2 /etc/paths.d . 5

3 Setting Environment variables 5
3.1 Max OSX 10.6 or earlier . 6
3.2 Mac OSX 10? or newer but not 10.12 or later . 6
3.3 macOS 10.12 (Sierra) . 7

4 Launch 7
4.1 Using Xcode . 8

4.1.1 Entering Values . 8
4.1.2 plist arrays and dictionaries . 8
4.1.3 plist structure . 9

4.2 Install plist file . 10

5 Users and Groups 10

6 Passwords 10

7 High Sierra macOS 10.13 11

8 PostgreSQL 11
8.1 Location . 11
8.2 Postgres password . 12
8.3 Create database cluster . 12

8.3.1 pg_hba.conf . 12
8.3.2 postgresql.conf . 12
8.3.3 postmaster.pid . 13

1

CONTENTS CONTENTS

8.4 Start the database server . 13
8.5 Create user . 13
8.6 psql . 13
8.7 Upgrade to postgres 9.6 . 13
8.8 Adding Postgres . 14
8.9 Postgres.app . 14

9 Homebrew 14
9.1 Homebrew Commands . 15
9.2 Homebrew services . 15

10 Apache 15
10.1 Shutdown Apache . 15
10.2 Install Homebrew apache . 15
10.3 Reconfigure LaunchDaemons . 16

11 Configure Apache 16
11.1 Edit httpd.conf . 17

11.1.1 Comments . 17
11.1.2 User and Group . 17
11.1.3 Webserver host sites . 18

12 PHP 18
12.1 Install PHP . 19
12.2 Enable PHP . 19
12.3 PHP Switcher . 20

13 Virtual Hosts 20
13.1 Edit httpd-vhosts.conf . 20
13.2 Add VHost entry for og.localhost . 20
13.3 Add to /etc/hosts . 21
13.4 Uncomment Include Statements . 21
13.5 Test in browser . 21

14 LedgerSMB 21
14.0.1 Ledgersmb . 22

14.1 Build up the apache vhost entry . 23
14.2 Add lsmb.localhost to /etc/hosts . 23
14.3 Prerequisites . 23
14.4 Download ledgersmb . 24
14.5 Go to the ledgersmb folder . 24
14.6 brew install cpanm . 24
14.7 Use cpanm to install all perl dependencies . 24
14.8 Create lsmb admin user in PostgreSQL . 24
14.9 Alter pg_hba.conf . 24
14.10Create file ledgersmb.conf . 25
14.11Start starman . 25
14.12perl *.pl . 26
14.13run http://localhost:5762/ledgersmb/setup.pl . 26
14.14Run http://localhost:5762/ledgersmb/login.pl . 26

macos.lyx 2

1 INTRO

1 Intro

This paper tries to give hints to people from a Unix and/or Linux background as to how to do things on the Apple
Mac.
This document is a draft and will be finalised only when the problems related to installing and setting up PostgreSQL
9.4 or later and LedgerSMB 1.5 are solved completely.

1.1 Unix Based

The Apple macOS is based on NeXT, a graphical version of Unix and you can execute command line shell programs
using the Terminal app or XQuartz xterm. But some of the common commands do not work as in Unix. In particular
there are significant differences in the areas of users and groups, passwords, setting of environment variables, and
others.
The Apple macOS is built on 2 levels -

1. a POSIX base called Darwin with a Unix kernel and commands and

2. a graphical system called Aqua superimposed on the Darwin base.

Apple supplies an application Terminal.app. Unix/Linux diehards like me are advised to find it using the Launchpad
icon on the dock, look for Others and click on it. One of the icons is labelled Terminal. Click and drag it on to the
dock. Now whenever you want a command line interface, just click on the Terminal icon.
To use xterm (an X terminal emulator) you have to have installed XQuartz which is a freely available implementation
of X for the Apple Mac. Once XQuartz is installed you have Apple’s version of X11 available.
With the introduction of Version 10.12.1 Apple have changed the name of the Mac’s operating system from OS X
(where X is pronounced /ten/) to macOS apparently to bring the name into line with iOS, watchOS, and tvOS
for the iphone and iPad, Apple watch, and Apple TV. Apple supply a free application called Xcode which allows
developers to create apps for all of the aforementioned devices.
I am currently running macOS 10.13 (High Sierra) on my Mac

1.2 Problems Unresolved

• Setting Environments variable outside of the shells

• We cannot get the –with-postgresql option to work with brew install phpxx. It complains that it is missing
pg_fe.h

1.3 Homebrew

In the course of trying to get everything working for the installation of postgresql version 9.4 and then LedgerSMB
we discovered the following

• Apple don’t supply the Mac with complete applications needed by developers

• In particular the Apache webserver has most modules disabled and some omitted

• Perl has only rudimentary support

• Apple do not supply a packet manager to ease the installation of large applications

The solution for these issues is a 3rd party product called Homebrew (described later in this document).
We used Homebrew to install a full developer version of apache, cpanm, and perl.

macos.lyx 3

1.4 Same as Unix/Linux 2 SETTING PATH

1.4 Same as Unix/Linux

• Directories: /bin /usr/bin /sbin /usr/sbin /usr/local

• File commands: cat cp mv ln rm chown chmod cd

• Edit commands: vi emacs sed grep awk

• Programming languages: gcc cc java perl python ruby

• Bourne Again Shell: bash ~/.profile ~/.bash_profile ~/.bashrc

• Utilities: who whoami pwd find netstat df du tar zip gzip unzip gunzip hexdump

1.5 Slightly Different

• Case blindness: ls /Private works showing you the contents of /private (/Private does not exist). Similarly ls
/users shows the contents of /Users (/users does not exist).

• locate command works fine but to update the file database: sudo /usr/libexec/locate.updatedb

• directory /etc is a symbolic link to /private/etc

1.6 Very Different

The Apple Mac graphical applications are part of Aqua and are stored in the following directories which have no
equivalent in Unix:

• /Applications

• /Library

• /System

• /Users

• /Volumes

Some of the above names also occur within a user’s home directory - in particular ~/Applications and ~/Library

• There is a command: open which tries to guess which program to invoke to execute or edit the target file.

• Processes are initiated via an application: /Library/LaunchAgents and /Library/LaunchDaemons and similar
in ~ and in /System

– LaunchAgents is used for apps invoked by a user

– LaunchDaemons are run at startup

– The command: brew services can be used to configure Launch see https://github.com/Homebrew/
homebrew-services

– When run with sudo, brew installs its .plist file(s) into /Library/LaunchAgents otherwise it installs into
~/Library/LaunchAgents

2 Setting PATH

The Mac uses the file: /etc/path and the directory: /etc/paths.d to hold the values used to set the environment
variable: PATH.

macos.lyx 4

2.1 /etc/path 3 SETTING ENVIRONMENT VARIABLES

2.1 /etc/path

Typical contents:

/usr/local/bin
/usr/bin
/bin
/usr/sbin
/sbin

The contents can be edited. We, for example have created a directory: /local and added /local/bin to the paths
file.

2.2 /etc/paths.d

You can create a named file for each Application: e.g. 40-XQuartz, LYX, TEX, aubit, postgres. Put into each of
these the path(s) required to run the application. For example for postgres you would put

/Library/PostgreSQL/9.3/bin

The above was for EnterpriseDB postgres which came with the Mac. After we had replaced it with postgres.app
we changed this to

/Applications/Postgres.app/Contents/Versions/latest/bin

For LYX

/Applications/LYX.app/Contents/MacOS

For TEX

/Library/TEX/texbin

For Quartz

/opt/X11/bin

For Aubit 4GL

/local/a4gl/bin

Some of these will have created for you by the Mac installation process. But for others like LYX you will need to
create the file and edit it with the correct path.
As usual when you next login you can test the path variable in xterm: echo $PATH

3 Setting Environment variables

The file ~/.profile and/or ~/.bash_profile and/or ~/.bashrc can be used just as with Unix/Linux with export
commands to set environment variables. e.g.

export PGPORT=5432

macos.lyx 5

3.1 Max OSX 10.6 or earlier 3 SETTING ENVIRONMENT VARIABLES

The .profile file is only read when you invoke the Terminal or xterm applications. If you want the variables to be set
for all logins then the official mechanism expected by macOS depends on the version of MacOS your are running.
MacOS versions from 10.6 are:
Version Nickname Year Comment
v10.6 Snow Leopard 2009
v10.7 Lion 2011 Last for ~/.MacOS
v10.8 Mountain Lion 2012 /etc/launchd.conf
v10.9 Mavericks 2013
v10.10 Yosemite 2014
v10.11 El Capitan 2015
v10.12 Sierra 2016 macOS!
v10.13 High Sierra 2017

3.1 Max OSX 10.6 or earlier

macOS will read a file ~/.MacOSX/environment.plist
If there is no directory ~/.MacOSX then you need to create it:

cd
mkdir .MacOSX

Now, if necessary create an empty file: environment.plist

touch .MacOSX/environment.plist

Now invoke the Mac command open:

open .MacOSX/environment.plist

The open command should invoke a Property List Editor (because of the plist suffix):

• Select Root

• Select Add a child

• Key should be the name of the variable you want to set

• Type should be String

• Value should be the value you want to set the variable to

Next time you log in the variable(s) should be set.

3.2 Mac OSX 10? or newer but not 10.12 or later

Mac will ignore /etc/environment.plist. Instead create or modify a file /etc/launchd.conf

sudo vi /etc/launchd.conf
setenv var value # where var is the name and value the value
setenv

You will need to logout and re-login for the settings to take effect.

macos.lyx 6

3.3 macOS 10.12 (Sierra) 4 LAUNCH

3.3 macOS 10.12 (Sierra)

Unfortunately we do not know how to set environment variables for GUI applications. The above methods have
been disabled in Sierra.
There is the possibility that the LauunchAgents and LaunchDaemons applications can be exploited to set environ-
ment variables.
We are working on that still. Websites have given an example:
Create a file say environment.plist and put it into ~/Library/LaunchAgents/

<?xml version=”1” encoding “UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”
“http:www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>
<dict>
<key>Label</key>
<string>my.startup</string>
<key>ProgramArguments</key>
<array>
<string>sh</string>
<string>-c<string>
<string>
launchctl setenv PGHOST localhost
launchctl setenv PGPORT 5432
launchctl setenv PGDATESTYLE ’SQL, dmy’

</string>
</array>
<key>RunAtLoad</key>
<true/>

</dict>
</plist>

If environment.plist is already loaded in ~/Library/LaunchAgents then

launchctl unload ~/Library/LaunchAgents/environment.plist

Modify the plist file then

launchctl load ~/Library/LaunchAgents/environment.plist

4 Launch

Apple uses the terms:

• Agents to designate normal programs which can be invoked at boot up or login

• Daemons (as in Unix/Linux) to designate programs which run in the background and will respond to client
requests to invoke other programs

To learn more use the commands:

man launchctl
man launchd.plist
man plist

The Apple Mac has 2 programs: launchd and launchctl to control the invocations of daemons and user programs.

macos.lyx 7

4.1 Using Xcode 4 LAUNCH

1. Launchctl reads xml files called Property Lists which have a suffix: .plist

2. The Property List describes the properties which will be set in the application to be invoked by the daemon:
launchd

3. The launchctl program controls the invocation of launchd. You can see how many instances of launchd have
been invoked with the command: ps -aef | grep launch

4. There are 5 potential directories into which these property lists are installed:

(a) /System/Library/LaunchDaemons (Apple supplied system wide daemon programs)
(b) /System/Library/LaunchAgents (Apple supplied system wide per user applications)
(c) /Library/LaunchDaemons (System wide daemons supplied by the system admin)
(d) /Library/LaunchAgents (System wide user programs supplied by the system admin)
(e) ~/Library/LaunchAgents (Per user programs provided by the user)

4.1 Using Xcode

Xcode is an apple development system which allows users to generate applications for all Apple device operating
systems: iOS, tvOS, watchOS, and macOS.
To edit a property list file the official method is to invoke Xcodle. Click on the Launch icon and find Xcode and
double-click its icon.
To create a new Property List file (e.g. env.plist)

• Click options: File -> New -> File... -> macOS

• Scroll down to Resource, click on the Property List icon

• Click on Next

• Save As Property List.plist: Overtype Property List with env

• Click Create

• You now see a panel with triples headed: Key Type Value

4.1.1 Entering Values

The triples you need to edit are rather obscure in their interface.
In each of the components you need to click near the left of the label, then after a pause you see a field into which
you can enter the value.
e.g. For Key click on the left and when you see the field then type in EnvironmentVariables,
for Type you click on the up-down symbol and select from the popup types (e.g. dictionary, string, date, data,
number, array, etc) Select dictionary. This should give you a new indented
for Value you click on the left and type into the field the value you want to enter.
For type array, Xcode won’t give you a key field, it knows that you will enter strings.
For type dictionary, Xcode will expect you to enter key-value pairs.

4.1.2 plist arrays and dictionaries

For keys ProgramArguments and EnvironmentVariables you need to be alert to the indentation which indicates the
components within the array or dictionary:
There is a small triangle icon which when clicked toggles between pointing down or to the right. Make sure it points
down if you want to enter components within the array or dictionary.
A symbol + and a symbol - will appear when you place the pointer to the right of the key. Click the + to insert
an item within the array or dictionary. If you don’t see the next line indented then hit the - symbol and move up
a level and try the + there.

macos.lyx 8

4.1 Using Xcode 4 LAUNCH

4.1.3 plist structure

A Porperty List is an XML file with a header, and a dictionary between tags <dict> ... </dict>.
For our purposes we wish to create a plist file with the following components within its dictionary:

• Label - key Label, type string, value nz.co.og.env

• ProgramArguments - key ProgramArguments, type array, value /bin/bash

• EnvironmentVariables - key EnvironmentVariables, type dictionary, value(s)

– key PGHOST, type string, value localhost

– key PGPORT, type string, value 5432

– etc

• RunAtLoad - key RunAtLoad, type boolean, value YES. Xcode will translate this to <true/>

A useful tactic is to:

1. Insert a component - say RunAtLoad

2. Save the file (Command Key + S) or Click on File - Save

3. View in a terminal screen the resulting xml file (say env.plist). You will see that Xcode has created the XML
header and all the structural markup: <key>, <array>, <dict>, <string>, <string>, and so on.

4. If alls well continue with previous component. Xcode seems to insert them in reverse order. I don’t think the
order is important to launchctl.

5. And so on

At the end of this process, you should see something like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>nz.co.og.env</string>
<key>ProgramArguments</key>
<array>
<string>/bin/bash</string>
</array>
<key>EnvironmentVariables</key>
<dict>
<key>PGHOST</key>
<string>localhost</string>
<key>PGPORT</key>
<string>5432</string>
</dict>

<key>RunAtLoad</key>
<true/>
</dict>
</plist>

The first 4 lines and the last 2 have been supplied by Xcode. You have told Xcode what to place between the first
<dict> and last </dict> tags.
In our example the Label: nz.co.og.key has to be unique on your computer and it is typical for Apple and developers
to invert their domain name, followed by an arbitrary key.

macos.lyx 9

4.2 Install plist file 6 PASSWORDS

The above screen shot was taken using Apple’s Shift+CommandKey+4 then clicking and dragging the area wanted.

4.2 Install plist file

• Copy the plist file into ~/Library/LaunchAgents

This did not work!

5 Users and Groups

The Mac does not use the /home directory. It puts users into a directory: /Users

6 Passwords

The Mac uses LDAP (Lightweight Directory Access Protocol) instead of the Unix/Linux methods.
So /etc/passwd, /etc/shadow may exist but are ignored, and passwd commands don’t work.
To set or reset passwords you must use the Apple System Preferences interface:

• Click on the Apple icon on top left of screen

• Click on System Preferences then click on Users and Groups

• Click on the padlock icon to unlock and allow changes

• Choose the user you wish to change the password for

• Click reset password

• Click the padlock icon to lock further changes

• Exit the app by clicking on the red exit button (top left of window)

macos.lyx 10

8 POSTGRESQL

7 High Sierra macOS 10.13

When we upgraded from Sierra macOS 10.12.6 to High Sierra macOS 10.13 the upgrade worked OK but dismay
followed - we no longer had the ftp command.
Our attempted solution to this was to use Homebrew:

brew install inetutils

The ftp command was now in /usr/local/bin
When we ran it, it seemed to work in that we were able to login to a remote site. The cd html command worked
but the command ls did not and nor did mput.
The error messages are:

500 Illegal PORT command
500 Unknown command
425 Use PORT or PASV first

This was resolved by running the new ftp with the option: -p # which means passive.
The next problem was that PDF files seemed to get contaminated on transfer. The solution here ended up as:

1. Use command: ftp -p to login

2. run command: type binary

3. mput filename.pdf

8 PostgreSQL

In our case Postgres has come installed on the machine but is only accessible to the user: postgres. PostgreSQL is
a free and opensource RDBMS (Relational Database Management System)
The installed postgres is version 9.3 sourced from EnterpriseDB and is based on the open source postgreSQL from
UCB (University of California Berkeley) with addons which allow management, integration, and migration. Michael
Stonebraker has been a leading figure in the develpment of postgres and its predecessor Ingres and for a while he
was also employed by Informix to work on their OnLine engine.
There are some problems to resolve before you can use Postgres.
Ledgersmb requires postgres v 9.4 or later.

8.1 Location

EnterpriseDB PostgreSQL was installed in directories:

/Library/PostgreSQL/9.3/

with executables in subdirectory bin

/Library/PostgreSQL/9.3/bin

After replacing this with postgres.app the installation was in

/Applications/Postgres.app/Contents/Versions/latest

where latest was a symbolic link to 9.6

/Applications/Postgres.app/Contents/Versions/latest/bin

Here you will find commands such as initdb, createdb, createuser, psql, and many others
All the postgres executables have man files. You can therefore type commands like: man psql to get manual
instructions.

macos.lyx 11

8.2 Postgres password 8 POSTGRESQL

8.2 Postgres password

You need to reset the postgres password unless you know it already. As per an above section, you cannot use the
usual Unix/Linux passwd command. It does not work with LDAP used on the Mac. You have to use the supplied
GUI app for users. Once this is done you will be able to login is as user postgres using the command:

sudo su postgres

This will later allow you to create a database cluster, grant access to other users, allow other users to create
databases etc.

8.3 Create database cluster

You need to create a new directory for postgres. The directory needs to be owned by the postgres superuser (by
default user postgres). Once created you then need to become user postgres and run the initdb command. The
example below assumes you will create /local/data as your database directory.

sudo su
mkdir /local/data #if it does not already exist
chown postgres /local/data
su postgres
$initdb -D /local/data

An alternative to the initdb command is:

$pg_ctl -D /local/data initdb

While this seems more verbose, you can use pg_ctl to de everything e.g. start, stop, restart the database server
etc. So most people choose to use pg_ctl as a maid or all work. To test that the pg_ctl command has worked you
can type:

pg_ctl -D /local/data status

After you have run the initdb command, postgres populates the directory /local/data with several files the most
significant of which are as follows but with the comments removed.

8.3.1 pg_hba.conf

IPv4 local connections:
host all all 127.0.0.1/32 trust
IPv6 local connections:
host all all ::1/128 trust

8.3.2 postgresql.conf

These settings are initialized by initdb, but they can be changed.
lc_messages = ’en_NZ.UTF-8’ # locale for system error message
strings
lc_monetary = ’en_NZ.UTF-8’ # locale for monetary formatting
lc_numeric = ’en_NZ.UTF-8’ # locale for number formatting
lc_time = ’en_NZ.UTF-8’ # locale for time formatting
default configuration for text search
default_text_search_config = ’pg_catalog.english’

macos.lyx 12

8.4 Start the database server 8 POSTGRESQL

8.3.3 postmaster.pid

80369
/local/data
1503025742
5432
/tmp
localhost
5432001 196608

8.4 Start the database server
pg_ctl start -D /local/data -l logfile

To check that this has worked

pg_ctl -D /local/data status

Postgres honours a set of environment variables which, if set, can eliminate the need for options like -D above: e.g.:

export PGDATABASE=mydemo
export PGDATA=/local/data
export PGPORT=5432 #the default
export PGDATESTYLE=’SQL, dmy’
export PGHOST=localhost

Put these statements into either ~/.profile or ~/.bash_profile
You can now enter commands like pg_ctl status
without the need for the -D argument

8.5 Create user

If you wish to access the database server as a user other than postgres, you need to run the command createuser
which comes with postgres. There are options to allow the ability to create databases and drop them.
To create a user (say John) with full privileges:

sudo su postgres
createuser -s -d -r John

The upper case J in John works OK without having to be quoted.
Once you have used this createuser option, you can login as John and with full privileges create and drop databases,
run psql SQL queries and other statements.

8.6 psql

psql is a command line SQL interpreter which can be used to create and drop databases and tables and stored
procedures, and to run SQL statements: select, insert, delete, etc. It uses the readline library (similar to the shells)
to hold a history of commands so that you can arrow up to previous commands and edit them for re-execution.

8.7 Upgrade to postgres 9.6

Options seem to be

• use Homebrew: brew install postgres

• install postgres.app.dmg

We chose to use postgres.app

macos.lyx 13

8.8 Adding Postgres 9 HOMEBREW

8.8 Adding Postgres

We could not find a method of upgrading the EnterpriseDB implementation of PostgreSQL 9.3.
So we decided to

1. Shutdown PostgreSQL 9.3

(a) pg_ctl stop

2. Uninstall PostgreSQL 9.3 by running Finder and then searching for a file: uninstall-xxxxx. double-click and
the app uninstalls itself.

3. Download Postgres.app from httpd://postgresapp.com

4. Install postgres.app by

(a) clicking the Download icon on the dock

(b) double-clicking on the postgres.app.dmg icon

(c) control-clicking on the Postgress.app icon and dragging it into the Applications directory icon

8.9 Postgres.app

Postgres.app installs by default into the /Applications directory
When we installed it it included both versions 9.5 and 9.6 or PostgreSQL within the Versions subdirectory
It places your preferences into ~/Library/Application Support/Postgres/
It sets your default Database location in ~/Library/Application Support/postgres/var-9.6/

You need to place the path to the postgres executables in a file in directory /etc/paths.d
e.g.

/Applications/Postgres.app/Contents/Versions/latest/bin/

9 Homebrew

Created by Max Howell, Homebrew is described as the missing package manager for macOS. It is written in Ruby
and and is git-based so you can hack it yourself. As its website says: Homebrew installs the stuff you need that
Apple didn’t.
Find it on the web at https://github.com/Homebrew
The homebrew site strongly recommends that you install into /usr/local

To install Homebrew, open an xterm terminal and enter the command:

cd /usr/local
ruby -e “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)”

The reason for favouring /usr/local is that Apple will not interfere with its contents when upgrades occur.
Homebrew sustains the metaphor of brewing with a Cellar for storage of application, bottles to contain binary
applications, and taps to hold 3rd party repositories!
Homebrew provides a service similar to Linux programs: zypper, aptitude or apt, yum, rpm, etc.
The following commands have been taken from Andy Miller’s website:

brew tap homebrew/dupes
brew tap homebrew/homebrew-php
brew tap homebrew/apache

macos.lyx 14

9.1 Homebrew Commands 10 APACHE

9.1 Homebrew Commands

Command What is does
brew cleanup Remove old versions
brew commands Produce this list
brew doctor Check for problems
brew home Browse Homebrews homepage
brew link Symlink from Cellar to /usr/local/bin
brew list List installed homebrew formulas
brew missing List missing dependencies
brew options php55 List –options available
brew outdated List stuff to update
brew prune Remove broken symlinks
brew reinstall uninstall then install
brew search List available formulas
brew uninstall uninstall arg
brew unlink Remove links to /usr/local/bin
brew update Get newest homebrew
brew uses Show dependencies

9.2 Homebrew services

There is an external command: brew services which can be used to configure launchctl.
Use the command: brew services --help

to get a list of commands and what they do: list, run, start, stop, restart, and cleanup.
If you use sudo, homebrew operates on /Library/LaunchDaemons instead of its normal ~/Library/LaunchAgents

10 Apache

Apache is a webserver in almost universal use on Unix/Linux and on the Mac. macOS (High) Sierra comes with
apache version 2.4 pre-installed. But Andy Miller of getgrav.org claims that it is no longer easy for developers
to use the installed apache because Apple have removed some important scripts in the Sierra release. The solution
is to install the full apache using Homebrew. This way we will not interfere with the Sierra version and future
upgrades from Apple will not mess with the Homebrew version.
See: httpd.apache.org

10.1 Shutdown Apache

First shutdown the macOS apache:

sudo apachectl stop
sudo launchctl unload -w /System/Library/LaunchDaemons/org.apache.http.plist 2>/dev/null

10.2 Install Homebrew apache
brew install httpd24 --with-privileged-ports --with-http2

Upon completion of the above command, you should see a message like:

/usr/local/Cellar/httpd24/2.4.27: 212 files, 4.5M, built in 1m32s

The path above is important to note as it has to be used in the following commands

macos.lyx 15

10.3 Reconfigure LaunchDaemons 11 CONFIGURE APACHE

10.3 Reconfigure LaunchDaemons

We now must set up the system’s LaunchDaemons to auto-start our Homebrew Apache with root privileges:

sudo cp -v /usr/local/Cellar/httpd24/2.4.27/homebrew.mxcl.httpd24.plist /Library/LaunchDaemons
sudo chown -v root:wheel /Library/LaunchDaemons/homebrew.mxcl.httpd24.plist
sudo chmod -v 644 /Library/LaunchDaemons/homebrew.mxcl.httpd24.plist
sudo launchctl load /Library/LaunchDaemons/homebrew.mxcl.httpd24.plist

There is a homebrew command which seems to do all of the above:

brew services start homebrew/php/php55

At this point your homebrew Apache should be running. Point your browser (Safari or Chrome) to localhost and
you should see a simple header “It works!”
This worked fine for us.
If not Andy suggests that you run the command:

ps -aef | grep httpd

You should see a few httpd processes if Apache is up and running.
Try to restart Apache with:

sudo apachectl -k restart

While apache is restarting you can watch the Apache error log in a new xterm window with the command:

tail -f /usr/local/var/log/apache2/error_log

If that does not work check that you have Listen: 80 in your configuration file:

/usr/local/etc/apache2/2.4/httpd.conf

Apache is controlled via the apachectl command. Useful commands are:

sudo apachectl start
sudo apachectl stop
sudo apachectl -k restart

The -k option tells apachectl to restart immediately.
You can test your apache configuration with the command:

apachectl -t

11 Configure Apache

The HyperText Transfer Protocol (HTTP) defines 2 components:

1. A front end browser (such as Safari and/or Chrome on the Mac, or Firefox on Linux) which sends requests
to a back end

2. A back end (a webserver such as Apache) which sends HTML pages to the front end

macos.lyx 16

11.1 Edit httpd.conf 11 CONFIGURE APACHE

Over the years the backends have been improved by adding programming capabilities using CGI (Common Gateway
Interface) and then PHP (Private Home Pages) which allow you to shape the html pages before supplying them to
the browser.
Similarly browsers have had their specifications improved to support languages embedded in supplied html pages
which the browser interprets and executes in the front end. One of these languages is Javascript (also known as
ECMAscript) which current browsers support.
Apple do not expect Mac users to be software developers so the standard version of apache they supply is very
rudimentary and nearly everything is disabled.
In contrast the apache installed by Homebrew is reasonably complete and can be readily configured to enable more
complete implementation.

11.1 Edit httpd.conf

This section explains how to reconfigure the apache HTTP to add a local web server. After changes to any of the
relevant files you will need to restart the httpd daemon:

sudo apachectl -k restart

for the changes to take effect.
The new homebrew version of Apache will be configured by editing the httpd.conf file in the directory

/usr/local/etc/apache2/2.4/httpd.conf

In contrast the original Apache installed into macOS is in /etc/apache2 (which is really a symbolic link to
/private/etc/apache2)
The layout within the 2 apache2 directories is different. In particular the following properties are all configurable
from the httpd.conf file:
Shown here are the defaults which are relevant to us:

ServerRoot “/usr/local/opt/httpd24”
Listen 80
DocumentRoot “/usr/local/var/www/htdocs”
<Directory “/usr/local/var/www/htdocs”>

Options Indexes FollowSymLinks
AllowOverRide None
Require all granted

</Directory>
#LoadModule rewrite_module libexec/mod_rewrite.so
User daemon
Group daemon

11.1.1 Comments

Features which have been disabled in httpd.conf begin with a hash:#
To enable the feature, remove the #. (Using vi you position the cursor over the # and type x).
If you are changing an existing statement, it is prudent to copy the current line, add a # at the beginning of the
line, then modify the copy to the new value.
This makes it easier to revert to the original by commenting out the new line and uncommenting the old.

11.1.2 User and Group

Andy Miller’s site suggests adding your own Directory entry. Make a directory ~/Sites
Change the User and Group statements in httpd.conf to:

macos.lyx 17

12 PHP

User John
Group staff

where John is your login name (not necessarily John).
You can add into the httpd.conf file a <Directory> entry for yourself (in my case John) as follows:

<Directory "/Users/John/Sites/">
AllowOverride All

Options Indexes MultiViews FollowSymlinks
Require all granted
</Directory>

• LoadModule php5_module libexec/libphp5.so

– The above is one example of dozens most of which are preceded by a # which comments out that module
thereby disabling it

– To enable it you remove the # (remembering to restart the httpd with the command:
– sudo apachectl restart

To enable our webserver for user John we need to search for and uncomment/enable the following:

#LoadModule userdir_module libexec/mod_userdir.so
#LoadModule vhost_module libexec/mod_vhost_alias.so
#Include /usr/local/etc/apache2/2.4/extra/http-userdir.conf
#Include /usr/local/etc/apache2/2.4/extra/http-vhosts.conf

The command to do this would be:

cd /usr/local/etc/apache2/2.4
sudo cp httpd.conf httpd.conf.bak
sudo vi httpd.conf
use the / command to find the above patterns and remove the leading
some of them are already enabled

11.1.3 Webserver host sites

To create apache access to your own html files via a local web host e.g. og.localhost, create a directory ~/Sites:

mkdir ~/Sites
mkdir ~/Sites/og

The Sites directory was expected in earlier versions of Mac OS X but since Lion 10.7 is no longer supplied by
default. You will find that the file:

/usr/local/etc/apache2/extra/httpd-userdir.conf

contains the statement: Userdir public_html
Change this to: Userdir Sites. (The macOS equivalent has this entry)

12 PHP

PHP (originally Private Home Pages but now a recursive acronym called PHP Hypertext Processor) was created
by Rasmus Lerdorf and provides a way for you put instructions into your HTML files to create dynamic content.
The PHP instructions are read and parsed by the webserver which replaces them with html code and then sends
the modified html file to the browser.
PHP statements are embedded in html files within tags <?php ... ?> or possibly <? ... ?>.
To use PHP, you have to install it, and then reconfigure Apache to enable it.
See:www.php.net

macos.lyx 18

12.1 Install PHP 12 PHP

12.1 Install PHP

There are 4 separate versions of PHP: 5.5, 5.6, 7.0 and 7.1
Update your xcode implementation:

xcode-select --install

We didn’t and our 1st attempt to install php produced a list of errors related to versions of the xcode commands.
Use Homebrew to download, install, and enable PHP support in Apache. You can install all 4 using the following
commands:

brew install php55 --with-httpd24 --with-postgresql
brew unlink php55
brew install php56 --with-httpd24 --with-postgresql
brew unlink php56
brew install php70 --with-httpd24 --with-postgresql
brew unlink php70
brew install php71--with-httpd24 --with-postgresql

We found that the –with-postgresql option does not work complaining about missing libpq_fe.h files.
The missing files are there but in the /Applications/Postgres.app/Contents/Versions/9.6/include path
rather than the /usr/local/etc path where Homebrew expects it.
We don’t know how to tell Homebrew where to look for this. We may end up having to install a Homebrew version
of PostgreSQL.
Configuration settings for the above can be tweaked by editing:

/usr/local/etc/php/5.5/php.ini
/usr/local/etc/php/5.6/php.ini
/usr/local/etc/php/7.0/php.ini
/usr/local/etc/php/7.1/php.ini

12.2 Enable PHP

Edit the httpd configuration file:

/usr/local/etc/apache2/2.4/httpd.conf

Search for

#LoadModule php5_module

Modify the LoadModule php5 statements with:

LoadModule php5_module /usr/local/opt/php55/libexec/apache2/libphp5.so
LoadModule php5_module /usr/local/opt/php56/libexec/apache2/libphp5.so
LoadModule php7_module /usr/local/opt/php70/libexec/apache2/libphp7.so
LoadModule php7_module /usr/local/opt/php71/libexec/apache2/libphp7.so

You read what homebrew advises to complete installation using the brew info command. e.g.

brew info php71

macos.lyx 19

12.3 PHP Switcher 13 VIRTUAL HOSTS

12.3 PHP Switcher

There is a script: sphp which allows you to switch to any of the installed PHP Modules without having to comment
and uncomment the LoadModule statements in the httpd.conf file.
Install it into Homebrew’s standard location: /usr/local/bin

curl -L https://gist.github.com/w00fz/142b6b1975ea6979137b963df959d11/raw > /usr/local/bin/sphp
chmod +x /usr/local/bin/sphp

Now re-edit the httpd.conf file by
Commenting out all the current LoadModule phpx_module statements with the following 2 statements:

Brew PHP LoadModule for sphp switcher
LoadModule php5_module /usr/local/lib/libphp5.so
#LoadModule php7_module /usr/local/lib/libphp7.so

The sphp program will automatically handle the uncommenting and commenting of the appropriate PHP module.
Ignore the fact that the files libphp5.so and libphp8.so are not in /usr/local/lib.
After running the commands: sphp 55 and/or php71 the files will magically appear.

13 Virtual Hosts

Apache has provision for supporting virtual hosts. This is installed but, by default, disabled.
Remember to test your configuration after editing files: httpd.conf, httpd-vhosts.conf, and httpd-userdir.conf using
the command:

apachectl -t

If apached says “Syntax OK” then you can proceed with:

sudo apachectl -k restart

To create support for virtual host for og.localhost:

13.1 Edit httpd-vhosts.conf

edit the file /etc/apache2/extra/httpd-vhosts.conf

cd /local/etc/apache2/extra
sudo cp httpd-vhosts.conf httpd-vhosts.conf.bak
sudo vi httpd-vhosts.conf

13.2 Add VHost entry for og.localhost

Replace the contents of httpd-vhosts.conf with:

#virtual Host Entry for og.localhost
<VirtualHost *:80>
DocumentRoot “/Users/John/Sites/og”
ServerName og.localhost
ErrorLog “/usr/local/var/log/apache2/og-error_log”
CustomLog “/usr/local/var/log/apache2/og-access_log” common
</VirtualHost>

macos.lyx 20

13.3 Add to /etc/hosts 14 LEDGERSMB

13.3 Add to /etc/hosts

You will have to add the following lines to the file /etc/hosts
Add the following lines to the file.

#Local sites

127.0.0.1 og.localhost

The command to do this:

cd /etc
sudo cp hosts hosts.bak
sudo vi hosts
use the commands G i to insert the 2 lines then
:wq

13.4 Uncomment Include Statements

If necessary uncomment the following lines in file: httpd.conf

#Include /usr/local/etc/apache2/2.4/extra/http-vhosts.conf
#Include /usr/local/etc/apache2/2.4/extra/http-userdir.conf

13.5 Test in browser

Point your browser to: og.localhost and you should see an html page listing your full PHP configuration. Alter-
natively you can use the command:

open http://og.localhost

The open command will open a new tab in your browser and display the output from <phpinfo()>

14 LedgerSMB

LedgerSMB is a free software double-entry bookkeeping system which uses PostgreSQL as its database server, any
standard browser for its user interface (on the Mac: Safari or Chrome), and uses LYX and TEX for high quality
typeset printed output. The LedgerSMB project has forked from SQL-Ledger and intends in near future versions
to use Javascript in the front end instead of perl in the backend to improve the responsiveness of the system. It is
maintained by Dieter Simader.
Its developers intend to re-implement the architecture more to the MVC (model-view-controller) design pattern to
make future development easier and less error-prone.
LedgerSMB is available from ledgersmb.org

Ledgersmb needs a fairly full and up to date version of perl. There is a website
https://mikkel.hoegh.org/2013/07/16/installing-ledgersmb-with-homebrew-on-os-x

which uses homebrew to install a fuller version of perl which will be used by ledgersmb.
We have tried the advice on this site but it is out of date (2013). Since then version 1.5 requires Plack to handle
integration with front-end servers
Later versions of ledgersmb will replace the .pl files with javascript so the fuller perl will not be necessary.
After flirting with the install process outlined in the mikkel.hoegh.org website, we abandoned it.
We simply downloaded the tar file and extracted the contents as described below.

macos.lyx 21

14 LEDGERSMB

14.0.1 Ledgersmb

Ledgersmb supplies a file in /usr/local/ledgersmb/conf named apache-vhost.conf

Use this as the basis for adding another <VirtualHost> .. </VirtualHost> entry into the virtual host conf file:
/usr/local/etc/apache2/2.4/extra/httpd-vhosts.conf

cd /usr/local/ledgersmb/conf
sudo cp apache-vhost.conf /etc/apache2/extra

The file looks like this:

This is a ’vhost’ definition file example for use with Starman/LedgerSMB
reverse proxying.
#
Please replace the following parameters:
#
* WORKING_DIR
* YOUR_SERVER_NAME
* SSL_KEY_FILE
* SSL_CERT_FILE
* SSL_CHAIN_FILE
#
#
this block also requires mod_ssl and mod_rewrite to be enabled
Comment out the ’Listen’ and/or ’NameVirtualHost’ when Apache complains
Listen 443
NameVirtualHost is ignored by Apache 2.4
NameVirtualHost *:443
<VirtualHost *:443>
ServerName YOUR_SERVER_NAME
DocumentRoot WORKING_DIR/UI
If you own a publicly exposed server, consider submitting it
to the SSL security tests available at
https://www.ssllabs.com/ssltest/
SSLEngine On
SSLCertificateFile SSL_CERT_FILE
SSLCertificateKeyFile SSL_KEY_FILE
SSLCertificateChainFile SSL_CHAIN_FILE
SSLRequireSSL
RewriteEngine On
Rewrite ’/’ URL to /login.pl script
RewriteRule "^/$" "/login.pl" [R=301,L]
"hidden" fil<Directory "/usr/local/ledgersmb"> AllowOverride None Options None Require all granted </Directory>es (those starting with a dot), don’t exist
RewriteRule "^/\." - [R=404,L]
configuration files (those ending in ’.conf’), don’t exist
RewriteRule "\.conf$" - [R=404,L]
Rewrite non-static content to the application backend
RewriteCond "%{REQUEST_FILENAME}" !-d
RewriteCond "%{REQUEST_FILENAME}" !-f
RewriteRule "^/(.*)" "http://localhost:5762/$1" [P]
ProxyPassReverse "/" "http://localhost:5762/"

</VirtualHost>

Make the following changes as suggested by the #comments in the file:

• WORKING_DIR /usr/local/ledgersmb

macos.lyx 22

14.1 Build up the apache vhost entry 14 LEDGERSMB

• YOUR_SERVER_NAME lsmb.localhost

• SSL_KEY_FILE /usr/local/etc/apache2/2.4/server.key

• SSL_CERT_FILE /usr/local/etc/apache2/2.4/server.crt

• SS:_CHAIN_FILE /usr/local/etc/apache2/2.4/server_ca.crt

14.1 Build up the apache vhost entry

We started to progressively build up the appropriate entry for httpd-vhosts.conf

<VirtualHost *:443>
DocumentRoot "/usr/local/ledgersmb/"
ServerName lsmb.localhost
ErrorLog "/usr/local/var/log/apache2/lsmb-error_log"
CustomLog "/usr/local/var/log/apache2/lsmb-access_log" common

</VirtualHost>

This failed with an error message saying we didn’t have permission to access /
Eventually we fixed this by adding to the httpd.conf file the following statement:

<Directory “/usr/local/ledgersmb”>
AllowOverride None
Options None
Require all granted

</Directory>

14.2 Add lsmb.localhost to /etc/hosts

Add the entry: 127.0.0.1 lsmb.localhost
Your /etc/hosts file should now have its last 4 lines:
Local Sites

127.0.0.1 og.localhost
127.0.0.1 lsmb.localhost

We skipped the section about SSL encryption.
We copied the files index.html and index.php to /usr/local/ledgersmb and altered the index.html changing og to
lsmb.
We could now test either by pointing a browser to lsmb.localhost or from the Terminal command line typing:

open http://lsmb.localhost

It worked! We saw the pages generated by PHP showing our full configuration.

14.3 Prerequisites

The current version of ledgersmb (1.5) requires the following:

• Perl 5.10 or newer (full core installation)

• Dojo an open source module Javascript library http://dojotoolkit.org

• Plack a perl application programming framework plackperl.org

– PSGI Perl web Server Gateway Interface specification implemented by Plack

• Starman a Perl web Server Gateway Interface supporting Plack/PSGI

macos.lyx 23

14.4 Download ledgersmb 14 LEDGERSMB

14.4 Download ledgersmb

14.5 Go to the ledgersmb folder
sudo su
cd /usr/local
tar xf /Users/John/Downloads/ledgersmb-1.5.7.tar

14.6 brew install cpanm

The latest version (1.5.9) of ledgersmb seems to expect cpanm. So we loaded that:

brew install cpanm

14.7 Use cpanm to install all perl dependencies
sudo su
cd /usr/local/ledgersmb
cpanm --quiet --notest --with-feature=starman \

--with-feature=latex-pdf-ps \
--installdeps .

Cpanm installs all the perl modules dependencies it finds as well as starman and latex-pdf-ps. On our system it
installed 77 modules.

14.8 Create lsmb admin user in PostgreSQL

In our case John was the postgres superuser so the following command created a non superuser user in postgres:

createuser --no-superuser --createdb --login --createrole --pwprompt lsmb_dbadmin

The command will prompt for the password you need to create and ask you to repeat it. The createuser arguments
have the following meanings:

• –no-superuser means the user cannot drop databases

• –createdb means the user can create new databases

• –login means the user must login

• –createrole means the user can assign roles (permissions) to other users

• –pwprompt means the user must supply passwords when logging in

14.9 Alter pg_hba.conf

We had trouble finding where this file was kept.
It was in /Library/Application Support/Postgres/var-9.6
This was despite our having upgraded Postgres.app to version 10.
For now at least we decided to let sleeping dogs lie and chose not to increase the sucurity of the system by changing
the contents from:

TYPE DATABASE USER ADDRESS METHOD
local all trust
host all all 127.0.0.1/32 trust
host all all ::1/128 trust

macos.lyx 24

14.10 Create file ledgersmb.conf 14 LEDGERSMB

to

local all postgres peer
local all all peer
host all postgres 127.0.0.1/32 reject
host all postgres ::1/128 reject
host postgres,template0,template1 lsmb_dbadmin 127.0.0.1/32 md5
host postgres,template0,template1 lsmb_dbadmin ::1/128 md5
host postgres,template0,template1 all 127.0.0.1/32 reject
host postgres,template0,template1 all ::1/128 reject
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

Maybe later on.
When we make the above change we will need to run the command:

pg_ctl restart

14.10 Create file ledgersmb.conf
cd /usr/local/ledgersmb
cp conf/ledgersmb.conf.unbuilt-dojo ledgersmb.conf

Edit ledgersmb.conf so that the path statement reads:

PATH=/usr/local/bin:/usr/local/sbin:/bin:/usr/bin:\
/Applications/Postgres.app/Contents/Versions/latest/bin

The [printers] section needs to be altered in our case to

[printers]
laser = lpr -P HP_LaserJet_CP_1025nw
inkjet = lpr -P HP_Officejet_Pro_8630

14.11 Start starman
starman -I lib --kisten localhost:5762 tools/starman/psgi

Trouble here immediately!
starman not in our PATH. We found it in

/usr/local/Cellar/perl/5.26.0/bin/

It is a perl script with header:
So we symlinked it:

ln -s /usr/local/Cellar/perl/5.26.0/bin/starman /usr/local/bin

Now it ran but produced a never-ending series of error messages.
So we were defeated at this point. We afe still working on resolving this problem!

macos.lyx 25

14.12 perl *.pl 14 LEDGERSMB

14.12 perl *.pl

Alter the supplied *.pl files so that their first lines of #!/usr/bin/perl all become #!/usr/local/bin/perl
The perl command to do this is:

perl -p -i -e ’s/^#!\/usr\/bin\/perl/#!\/usr\/local\/bin\/perl/’ *.pl

To explain the above:

• -p means run perl in a loop (one invocation for each of files *.pl)

• -i (alter in place) means take each file, rename it, and put the output into the original file name

• -e means treat the following expression as one to execute

• the perl substitution command is s/original/final/. Because we have slashes in the filenames, we have to
escape them using the perl (and shell) mechanism of preceding them with a backslash. The backslash does
its job of preventing perl from interpreting the slash as a command delimiter and perl removes the backslash
and continues processing.

14.13 run http://localhost:5762/ledgersmb/setup.pl

This should guide you through the creation and privileged management of company databases.

14.14 Run http://localhost:5762/ledgersmb/login.pl

This is the normal login for the ledgersmb application.

macos.lyx 26

