Public Key Encryption

John O’Gorman
john@og.co.nz

9th April 2017

The following algorithm for public key encryption was discovered by Clifford
Cocks working for the UK intelligence GCHQ in 1973 and subsequently
patented in the USA (but nowhere else) by 3 Americans Rivest, Shamir, and
Adleman. It is commonly known as the RSA algorithm. The patent expired
in the USA in 2000. It is based on the following principles: modulo (or
clock) arithmetic, the Chinese Remainder Theorem, and the Fermat/Euler
Theorem.

1 RSA Algorithm

1. Generate 2 large prime numbers p and gq.
2. Let n = pq.
3. Let m = (p—1)(g — 1). m is also known as ¢ (n) or the totient of n.

4. Choose a small integer e which has no common factor with m (except

1).

5. Find d such that de mod m = 1. A practical way to do this is to
systematically try increasing values of k in the expression # until
it returns a whole number.

6. Publish n and e as the public key to encrypt messages letter by letter.
You keep d as your private key to decrypt messages encrypted with
the public key e.

7. To encrypt plaintext P use C' = P° mod n

8. To decrypt encrypted C use P = C% mod n

2 EXPLANATION

2 Explanation

2.1 Modulo Arithmetic

Imagine a clock with hour 0 instead of 12 so that the digits run from 0 to 11.
This represents modulo 12 and constrains all values to the integers 0, 1,2, ...
to 11. Add 1 to 11 and you get 0. If you start from 3 and add any number
of 12s you go round the clock to 3. This can be expressed mathematically
as £ = « + kn(modn) for any k. When you divide in modulo arithmetic,
you produce 2 integer values: a quotient and a remainder. The remainder
when you divide x by n is expressed as x mod n in computer languages such
as C, Pascal, and 4GL - other languages such as perl, python, sh, bash, etc,
use the % operator instead of mod. e.g. x %n

2.2 Factors, Primes, Coprimes, etc

If you Google for RSA you will encounter a lot of specialised mathematical
terminology. This glossary should help you decipher the explanations.

Factors are numbers which divide equally into another number e.g. 2, 3,
4, and 6 are factors of 12 (and more trivially, so are 1 and 12)

Prime numbers have no factors except the trivially obvious themselves
and 1. The first few primes are 1, 2, 3, 5, 7, 11. They get sparser as
the value rises.

Coprimes: Two or more numbers are said to be coprime if they have no
common factors (apart from 1). e.g. 7 and 8 are coprime but 8 and 10
are not (since they have 2 as a common factor). Note that a number
does not have to prime to be coprime!

Congruent: The relationship: ed = 1 (mod m) is sometimes expressed as
ed congruent 1 (mod m)

GCD is the Greatest Common Divisor of 2 numbers. e.g. GCD (12,18) is
6. HCF (Highest Common Factor) is the same thing. In some sources
you may find GCD(e,¢(n)) = 1 meaning e has no common factor
with m except 1.

Totient: The expression m = (p — 1) (¢ — 1) where n = pq can be called
the totient of n, or ¢ (n), or phi(n). It represents the number of val-
ues between 1 and n which are coprime with n (i.e. have no common
factors with n apart from 1). It was studied by the Swiss mathem-
atician Euler. Totient is from the Latin for that many times.

pkerypt.lyx 2

3 EXAMPLES

Why does the formula work?

There are n values between 1 and n but these include

p multiples of ¢ (q,2q, 3¢, ..pq) and similarly

g multiples of p (p, 2p, 3p, ..qp).

As pq appears in both lists of multiples of p and ¢ as pg and ¢p , but
we want to count it only once, the number of factors is

p+q—1.

So the number of integers which are not factors of nisn — (p+q—1)
or pq — p — q + 1 which factorises into:

(p—1)(¢—-1).!

Diaphantine: Polynomial equations confined to integers in modulo arith-
metic such as the above are named after a 3rd century mathematician
Diaphantus of Alexandria.

Chinese Remainder Theorem states that if x = y (modp) and =z =
y (mod ¢) then z =y (mod pq)

Fermat/Euler Theorem states that if p is prime and « # 0 (mod p) then
2P~1 =1 (mod p)

3 Examples

From the command line in Linux or Mac OS X sustems, you can try out the
RSA algorithm using small values for p, q, d, and e. It would be nice if we
could use the shell’s arithmetic evaluation to test the formulas but unfortu-
nately even for smallish values of d and e we soon overflow the shells’ integer
storage. e.g. $((6**65)) returns 0. So instead we pipe the expression 665
to the bc program as follows:

echo "67°65" | bc. bc has unlimited precision integer arithmetic. An ex-
ample:

#!/bin/sh

p=7 9=19 n=$((p*q)) m=$(((p-1)*(g-1))) e=5 d=65
echo p=$p g=%q n=$n m="(p-1) (g-1)"=%m e=%e d=$d
P=6

echo Encrypting P=$P

C=$(echo "($P~$e)%$n" | bc)

echo "Sending ($P~$e)%$n" to bc

echo "C=(P~e)¥n" = $C

echo Decrypting C=$C

T owe this explanation to Professor Rachel Fewster of the University of Auckland.

pkerypt.lyx 3

4 COMMENTS

nP=$(echo "($C~$d)%$n" | bc)
echo "Sending ($C~$d)%$n" to bc
echo "nP=(C~d)%n" = $nP

The output from the above:

p=7 q=19 n=133 m=(p-1)(g-1) = 108 e=5 d=65
Encrypting P=6

Sending (6°5)%133 to bc

C=(P~e)¥n = 62

Decrypting C=62

Sending (62°65)%133 to bc

nP=(C~d)’n = 6

Note that bc treats ~ as the exponent operator and % as the mod operator.

The values of shell variables are accessed by prefixing the variable ID with
a $ symbol.

$(...) is the shell mechanism for running a command and substituting its
output in place of the $(...).

$((expr)) is the shell mechanism for evaluating and arithmetic expression
and substituting the returned value in place of the $((...)).

The quotes are used to protect the parentheses and ~ and * from interpret-
ation by the shell. The quotes get stripped after the shell has parsed the
quoted expression.

4 Comments

The RSA algorithm depends on the infeasibility of finding the prime factors
of large integers. It is recommended that n have a length of 2048 bits at
least. Keys of lower magnitude are subject to persistent brute force attacks.

The open source application PGP (Pretty Good Privacy) and its GNU
version GPG (GNU Privacy Guard) both have inplemented the RSA ap-
plication for many years. Prior to 2000, PGP had to be downloaded from
outside the USA to avoid American patent restrictions. Since 2000 it has
been supplied with all distributions including US products such as RedHat
Linux, Ubuntu, Debian, etc.

pkerypt.lyx 4

